(I). Financial support from the Polish State Committee for Scientific Research (project 2P303 123 07) is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: KA1293). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H., Bellard, S., Brice, M. D., Cartwright, B. A., Doubleday, A., Higgs, H., Hummelink, T., Hummelink-Peters, B. G., Kennard, O., Motherwell, W. D. S., Rodgers, J. R. & Watson, D. G. (1979). *Acta Cryst.* B35, 2331–2339.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1992). *International Tables for Crystallography*, Vol. C, edited by A. J. C. Wilson, pp. 691–705. Dordrecht: Kluwer Academic Publishers.
- Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1994). Acta Cryst. B50, 617-625.
- Bertolasi, V., Nanni, P., Gilli, P., Ferretti, V., Gilli, G., Issa, Y. M. & Sherif, O. E. (1994). New J. Chem. 18, 251–261.
- Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
- Dal Colle, M., Bertolasi, V., de Palo, M., Distefano, G., Jones, D., Modelli, A. & Olivato, P. R. (1995). J. Phys. Chem. 99, 15011– 15017.
- Distefano, G., Dal Colle M., de Palo, M., Jones, D., Bombieri, G., Del Pra, A., Olivato, P. R. & Mondino, M. G. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 1661–1669.
- Etter, M. C. (1990). Acta Cryst. B46, 256-262.
- Gómez-Sánchez, A., de Garcia Martin, G. & Borrachero, P. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 301-306.
- Hansch, C. & Leo, A. (1979). Substituents Constants for Correlation Analysis in Chemistry and Biology, p. 131. New York: Wiley.
- Hassall, K. A. (1982). The Chemistry of Pesticides. Their Metabolism, Mode of Action and Uses in Crop Protection, p. 176. Weinheim: Verlag Chemie.
- Juaristi, E. & Cuevas, G. (1992). Tetrahedron, 48, 5019-5087.
- Kirby, A. J. (1983). The Anomeric Effect and Related Stereoelectronic Effects at Oxygen, p. 32. Berlin: Springer.
- Mandell, G. L. & Sande, M. A. (1985). The Pharmacological Basis of Therapeutics, edited by A. G. Gilman, L. S. Goodman, T. W. Rall & F. Murad, pp. 1212–1213. New York: MacMillan.
- March, J. (1992). Advanced Organic Chemistry. Mechanisms and Structure, p. 51. New York: Wiley.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1989). P3 Diffractometer Control Program. Version 2.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1990). XP. Interactive Molecular Graphics Program. Version 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1991). XDISK. Data Reduction Program. Version 4.20. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- TRIPOS Associates Inc. (1996). SYBYL. Molecular Modeling Software. Version 6.3. TRIPOS Associates Inc., 1699 S. Hanley Rd, Suite 303, St Louis, Missouri 63144–2913, USA.
- Zakrzewski, A. (1996). Private communication.

Acta Cryst. (1999). C55, 472-474

Intermolecular C— $H \cdots N$ and C— $H \cdots O$ interactions in (2S,4S,5R)-(-)-3,4-dimethyl-5-phenyl-2-(1,3-thiazol-2-yl)-1,3-oxazolidine

LAVELLE M. FITZSIMONS AND JOHN F. GALLAGHER

School of Chemical Sciences, Dublin City University, Dublin 9, Ireland. E-mail: gallagherjfg@dcu.ie

(Received 29 September 1998; accepted 28 October 1998)

Abstract

The title compound, $C_{14}H_{16}N_2OS$, prepared from (1R, 2S)-(-)-ephedrine, contains the oxazolidine ring in an envelope conformation, with the nitrogen atom 0.623 (2) Å from the plane of the other four oxazolidine-ring atoms. Intermolecular C—H···N and C—H···O interactions generate a two-dimensional hydrogen-bonded network, with shortest C···N and C···O distances of 3.403 (3) and 3.463 (2) Å, respectively.

Comment

Amino acid derivatives continue to be an important class of chiral compounds with applications in asymmetric synthesis and catalysis. The title compound, (I), a derivative of (1R,2S)-(-)-ephedrine, (II), is of current interest as a chiral auxiliary and as a new potentially bidentate ligand with an O,N or O,S donor-atom set for use in coordination chemistry.

Bond lengths and angles are unexceptional and in accord with anticipated values (Orpen *et al.*, 1994). The absolute structure can be deduced from (II) and by analysis of our X-ray data. The oxazolidine ring adopts an envelope conformation with N3 0.623 (2) Å from the (O1,C2,C4,C5) plane, which is at angles of 74.18 (6) and 86.99 (6)° to the phenyl and thiazole rings, respectively. The phenyl ring is oriented at an angle of 41.15 (8)° to the thiazolyl group. The molecular geometry in (I) compares with (2S,4S,5R)-(-)-2-(1*H*-imidazol-2-yl)-3,4-dimethyl-5-phenyl-1,3-oxazolidine, (III) (Gallagher

© 1999 International Union of Crystallography Printed in Great Britain – all rights reserved et al., 1998), and a related p-bromophenyl derivative (Just et al., 1983). Examination of the structure with PLATON (Spek, 1997a) showed that there were no solvent-accessible voids in the crystal lattice.

Fig. 1. A view of (1) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. A view of the intermolecular interactions in the crystal structure of (1).

There is an intermolecular Csp^3 —H···O interaction to O1 and a C(thiazole)-H...N(thiazole) interaction to N7, which generates a two-dimensional hydrogenbonded network, as depicted in Fig. 2, with details in Table 2. The closest H...S distance is the intramolecular H12...S1 of 3.00 Å, which is equal to the sum of the van der Waals radii (Bondi, 1964). The crystal structure of (I) contrasts with that of (III) where N—H···N hydrogen bonds, Csp^3 —H··· π (C==C, imidazole), C(arene)— $H \cdot \cdot \pi$ (arene) and C(arene)— $H \cdot \cdot O$ interactions generate a three-dimensional network (Gallagher et al., 1998). The difference in hydrogen-bonding abilities when comparing S(thiazolyl) in (I) and N-H(imidazolyl) in (III) accounts for the lack of strong hydrogen-bond formation and the presence of weak C—H···N and C—H···O hydrogen bonds in (I). Further comparative studies are in progress on related 1.3oxazolidine systems.

Experimental

The compound was prepared by refluxing thiazole-2-carboxaldehyde (500 mg, 4.42 mmol) and (1R, 2S)-(-)-ephedrine (730 mg, 4.42 mmol) in 20 cm³ of acetonitrile for 4 h. On cooling, the product was filtered and recrystallized from ethanol, yield 0.98 g (85%), m.p. 354–355 K. IR $\nu_{\rm max}$ (KBr) cm⁻¹; 3097 (*m*), 2800 (*m*), 2377 (*m*), 1455 (*s*), 1340 (*s*), 1059 (*s*). $[\alpha]_D^{20} = -75^\circ$ (*c* = 1.0, ethanol). ¹H NMR (400 MHz) (δ , CDCl₃) p.p.m.; 0.78 (*d*, 3H, CCH₃), 2.39 (*s*, 3H, NCH₃), 3.06 (*m*, 1H, MeCH), 5.12 (*s*, 1H, OCH), 5.20 (*d*, 1H, PhCH), 7.30–7.46 (*m*, 5H, C₆H₅), 7.46 (*d*, 1H, thiazole SCH), 7.83 (*d*, 1H, thiazole NCH).

Crystal data

Data collection

$C_{14}H_{16}N_2OS$	Mo $K\alpha$ radiation
$M_r = 260.35$	$\lambda = 0.7107$ Å
Orthorhombic	Cell parameters from 25
$P2_{1}2_{1}2_{1}$	reflections
a = 10.2981(8) Å	$\theta = 9.73 - 19.75^{\circ}$
b = 10.8896(9) Å	$\mu = 0.227 \text{ mm}^{-1}$
c = 12.1733 (7) Å	T = 294(1) K
$V = 1365.14 (17) \text{ Å}^3$	Block
Z = 4	$0.30 \times 0.30 \times 0.29$ mm
$D_{\rm r} = 1.267 {\rm Mg} {\rm m}^{-3}$	Colourless
D_m not measured	

Enraf-Nonius CAD-4 $R_{\rm int} = 0.012$ $\theta_{\rm max} = 27.4^{\circ}$ diffractometer $h = -13 \rightarrow 13$ ω -2 θ scans Absorption correction: none $k = 0 \rightarrow 14$ $l = 0 \rightarrow 15$ 3406 measured reflections 3118 independent reflections 3 standard reflections 2613 reflections with frequency: 120 min intensity variation: 0.5% $I > 2\sigma(I)$

$C_{14}H_{16}N_2OS$

Refinement

2	
Refinement on F^2	$\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$
$R[F^2 > 2\sigma(F^2)] = 0.035$	$\Delta \rho_{\rm min} = -0.21 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.091$	Extinction correction:
S = 1.024	SHELXL97 (Sheldrick,
3118 reflections	1997)
164 parameters	Extinction coefficient:
H-atom parameters	0.0120 (18)
constrained	Scattering factors from
$w = 1/[\sigma^2(F_o^2) + (0.0481P)^2]$	International Tables for
+ 0.1202 <i>P</i>]	Crystallography (Vol. C)
where $P = (F_o^2 + 2F_c^2)/3$	Absolute structure: Flack
$(\Delta/\sigma)_{\rm max} = 0.001$	(1983)
	Flack parameter = -0.01 (8)

Table 1. Selected geometric parameters (Å, °)

S1-C6	1.7250 (18)	C2C6	1.483 (2)
S1-C9	1.703 (2)	N7C6	1.289(2)
O1-C2	1.414(2)	N7-C8	1.373 (3)
O1C5	1.445 (2)	C8—C9	1.337 (3)
C6	89.54 (10)	01-C5-C11	110.17 (15)
C2-O1-C5	108.36 (14)	\$1-C6-N7	114.31 (14)
O1C2N3	104.45 (14)	S1C6C2	121.20(12)
01-C2-C6	109.74 (14)	S1-C9-C8	109.48 (16)
O1C5C4	104.16 (15)		
01-C2-C6-S1	81.84(16)	OI-C5-C11C12	-38.7(2)
OI -C2 -C6-N7	-95.7 (2)	OIC5C11C16	141.50 (17)

Table 2. Hydrogen-bonding geometry (Å, °)

D — $H \cdots A$	D—H	$\mathbf{H} \cdots \mathbf{A}$	$D \cdots A$	$D = \mathbf{H} \cdots \mathbf{A}$
C9—H9· · ·N7′	0.93	2.73	3.403 (3)	130
$C41 - H41C \cdots O1^n$	0.96	2.62	3.463 (2)	147
Symmetry codes: (i)	$\downarrow + x, \downarrow -$	$x_{1} = 2 - 2$; (ii)	$\frac{1}{2} + x, \frac{3}{2} - x.$	2 - 7

Molecule (I) is chiral and a complete 'Friedel' data set $(\pm h, +k, +l)$ was collected and the absolute structure determined [Flack parameter -0.01 (8)] by our X-ray analysis. The known absolute configuration of the (1R,2S)-(-)-ephedrine starting material, (II), is retained in the three chiral centres (2S, 4S, 5R)of the oxazolidine ring in (I). H atoms were allowed for as riding atoms with C-H in the range of 0.93 to 0.98 Å.

Data collection: CAD-4-PC Software (Enraf-Nonius, 1992). Cell refinement: SET4 and CELDIM in CAD-4-PC Software. Data reduction: DATRD2 in NRCVAX96 (Gabe et al., 1989). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990). Program(s) used to refine structure: NRC-VAX96 and SHELXL97 (Sheldrick, 1997). Molecular graphics: NRCVAX96, ORTEP (Johnson, 1976), PLATON (Spek, 1997a) and PLUTON (Spek 1997b). Software used to prepare material for publication: NRCVAX96, SHELXL97 and WordPerfect macro PRPCIF97 (Ferguson, 1997).

JFG thanks Dublin City University and Forbairt for funding of a research visit to the University of Guelph in 1998 and especially Professor George Ferguson for use of his diffractometer and computer system.

References

Bondi, A. (1964). J. Phys. Chem. 68, 441-451.

- Enraf-Nonius (1992). CAD-4-PC Software. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
- Ferguson, G. (1997). PRPCIF97. A WordPerfect-5.1 Macro to Merge and Polish CIF Format Files from NRCVAX and SHELXL97 Programs. University of Guelph, Canada.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
- Gallagher, J. F., Briody, J. M. & Cantwell, B. P. (1998). Acta Cryst. C54, 1331-1335.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Just, G., Potvin, P., Uggowitzer, P. & Bird, P. (1983). J. Org. Chem. 48, 2923-2924.

Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, Appendix A. Weinheim: VCH Publishers.

- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Spek, A. L. (1997a). PLATON. Molecular Geometry Program. Version of May 1997. University of Utrecht, The Netherlands.
- Spek, A. L. (1997b). PLUTON. Molecular Graphics Program. Version of May 1997. University of Utrecht, The Netherlands.

Acta Cryst. (1999). C55, 474-476

Bis(m-anisidinium) dihydrogénodiphosphate

MOHAMED OULD ABDELLAHI, FATMA BEN AMOR, AHMED DRISS ET TAHAR JOUINI

Département de Chimie, Faculté des Sciences, 1060 Campus Universitaire, Tunis, Tunisie. E-mail: tahar.jouini@fst.rnu.tn

(Reçu le 14 mars 1997, accepté le 7 septembre 1998)

Abstract

The structure consists of an alternate stacking of $(H_2P_2O_7)^{2-}$ anions and $(1,3-CH_3OC_6H_4NH_3)^+$ cations held together by N-H···O intermolecular hydrogen bonds.

Commentaire

L'arrangement moléculaire de cette structure, (I), est constitué de couches d'anions phosphates $(H_2P_2O_7)^{2-1}$

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1296). Services for accessing these data are described at the back of the journal.